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FORCED OSCILLATIONS OF A LAYER OF A VISCOELASTIC MATERIAL

UNDER THE ACTION OF A CONVECTIVE PRESSURE WAVE

UDC 532.591; 539.3.371V. M. Kulik

The longitudinal and transverse components of deformation of the surface of a flat layer of a vis-
coelastic material glued onto a solid base under the action of a traveling pressure wave are determined.
The coating compliance is described by two components corresponding to two components of surface
displacement. The dimensionless compliance components depend only on the viscoelastic properties
of the material, the ratio of the wave length to the layer thickness λ/H, and the ratio of the wave
velocity to the velocity of propagation of shear oscillations V/C0

t . Data on the dynamic compliance
are presented for 0.3 < λ/H < 30 and 0.1 < V/C0

t < 10. The compliance is demonstrated to be
determined by its absolute value and by the phase lag of strain from pressure. The effect of viscous
losses in the material and compressibility of the latter on the dynamic compliance is analyzed. An
anomalous behavior of the compliance with the wave velocity being greater than a certain critical
value is explained.

Key words: forced oscillations, elasticity modulus, loss factor, Poisson’s ratio, dynamic compli-
ance.

The complex compliance of a layer of a viscoelastic material of thickness H with Poisson’s ratio σ, density ρ,
and complex elasticity modulus E∗ = E(1 − iμ) (μ is the loss factor), which is glued to a solid base, is calculated
in the present paper. A steady regime of deformation of this coating under the action of a plane monochromatic
pressure wave propagating along the x axis with a velocity V is considered.

The displacement of particles of the medium is described by the dependence

ξ = iζ + jη = f(y) eiω(x/V −t),

where ζ and η are the displacement components directed along the coating and perpendicular to it, respectively.
The global equation of motion has the form [1]

∂2ξ

∂t2
= C2

t Δξ + (C2
l − C2

t ) graddiv ξ, (1)

where Cl = [E∗(1 − σ)/(ρ(1 + σ)(1 − 2σ))]1/2 is the velocity of the compression-extension wave in an infinite space
and Ct = [E∗/(2ρ(1 + σ))]1/2 is the velocity of the shear wave in an infinite space.

The boundary conditions are the condition of the absence of displacements on the solid wall

ζ = η = 0 for y = H (2)

and the condition of identical stresses on the external boundary

C2
l

∂η

∂y
+ (C2

l − 2C2
t )

∂ζ

∂x
= −P

ρ
eiω(x/V −t),

∂ζ

∂y
+

∂η

∂x
= 0 for y = 0. (3)
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Equation (1) is solved by the method of displacement division into the gradient and rotor parts. We introduce
two scalar functions Φ and Ψ such that

ζ =
∂Φ
∂x

+
∂Ψ
∂y

, η =
∂Φ
∂y

− ∂Ψ
∂x

. (4)

Substituting them into Eq. (1), we obtain the equations

∂2Φ
∂t2

− C2
l ΔΦ = 0,

∂2Ψ
∂t2

− C2
t ΔΨ = 0,

whose solution has the form

Φ =
[
A1

sinh (ωαy/V )
ωα/V

+ B1 cosh (ωαy/V )
]
eiω(x/V −t),

Ψ =
[
A2

sinh (ωβy/V )
ωβ/V

+ B2 cosh (ωβy/V )
]
eiω(x/V −t) .

Here α = [1 − (V/Cl)2]1/2 and β = [1 − (V/Ct)2]1/2.
Using the boundary conditions (2) and (3), we obtain a system of four equations for A1, A2, B1, and B2:

A1 = − α(1 + β2)F
1 + β2 − 2S

λP

4πρC2
t

, A2 =
iS

1 + β2 − 2S

λP

2πρC2
t

,

B1 = − 1
1 + β2 − 2S

λ2P

4π2ρC2
t

, B2 =
iαF

1 + β2 − 2S

λ2P

4π2ρC2
t

.

Here

S = (cosh (2παH/λ) − αβDF )/ cosh (2πβH/λ),

F =
sinh (2παH/λ) − (αβ)−1 cosh (2παH/λ) tanh (2πβH/λ)

cosh (2πβH/λ) − ((1 + β2)/2) cosh (2παH/λ) − D tanh (2πβH/λ)
,

D = sinh (2πβH/λ) − ((1 + β2)/(2αβ)) sinh (2παH/λ),

and λ = 2πV/ω is the wave length.
Using relations (4), we obtain the following expressions for the components of displacement of the coating

surface:

η
∣∣∣
y=0

=
(
A1 − i

2π

λ
B2

)
eiω(x/V −t), ζ

∣∣∣
y=0

=
(
i
2π

λ
B1 + A2

)
eiω(x/V −t) .

The compliance is the ratio of strain to applied pressure. The coating compliance has two components:
perpendicular to the surface Cn = |Cn| eiθn and parallel to the surface Cp = |Cp| eiθp . Here |Cn| and |Cp| are the
absolute values of the corresponding components of the dynamic compliance, and θn and θp are the phase lags of
the corresponding components of surface displacement from the acting pressure.

It is convenient to use the following dimensionless complexes for calculations and analysis:

C∗
n =

Cn

H/E
=

λ

H

( V

C0
t

)2 2(1 + σ)αF

4π(1 − iμ)2[2 − (V/C0
t )2/(1 − iμ) − 2S]

,

C∗
p =

Cp

H/E
=

λ

H

2(1 + σ)(S − 1)i
2π[2 − (V/C0

t )2/(1 − iμ) − 2S]
.

These complexes depend only on the ratio of the wave length to the coating thickness λ/H and on the ratio of
the wave velocity to the velocity of propagation of shear perturbations V/C0

t in an infinite medium filled by a
material with elasticity modulus E without viscous losses (μ = 0). The quantities C∗

n and C∗
p are the ratios of the

corresponding components of the dynamic compliance to the static compliance of a bar whose length is substantially
greater than its transverse size.

In [2, 3], the complex compliance was calculated for a one-dimensional model of a “locally deformed” coating.
It was demonstrated that the dynamic compliance (which contains one component in this case) as a function of
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Fig. 1. Dimensionless compliance versus the wave length for V/C0
t < 1 (a) and V/C0

t > 1 (b):
(a) V/C0

t = 0.1 (1), 0.5 (2), 0.75 (3), and 0.9 (4); (b) V/C0
t = 1.2 (1), 1.52 (2), 5 (3), and 10 (4);

the solid and dashed curves refer to μ = 0.0125 and 0.4, respectively.

frequency has several minimums and maximums. The value of the first compliance maximum at the frequency of
the first resonance

f0 =
√

E/ρ (1 + μ2)1/4/(4H),

rapidly decreases with increasing loss factor. The frequency dependence of the phase shift between strain and
pressure changes in a wavelike manner with a period 1/(2f0). The curves become closer to straight lines with
increasing viscous losses.

Figure 1 shows the vertical component of the dimensionless compliance as a function of the wave length.
For V/C0

t < 1 (Fig. 1a), all curves have a similar dome-shaped form. The dimensionless compliance increases
with increasing wave velocity and decreases with increasing loss factor. The maximum stratification of the curves is
observed in the region of the compliance resonance (λ/H = 1–3). In the long-wave part of the spectrum (λ/H > 10),
the curves corresponding to different values of V/C0

t merge together. Nevertheless, there is a small difference between
the curves corresponding to different values of μ.

The character of the dependence of the absolute value of the dynamic compliance on the wave length changes
when the wave velocity becomes greater than the velocity of propagation of shear oscillations. For V/C0

t � 1.5, the
value of λ/H that ensures a peak of the dimensionless compliance increases with increasing wave velocity (curves
2–4 in Fig. 1b). The maximum value of the compliance is reached at V/C0

t � 1.52. The peaks on the compliance
curves drastically decrease with increasing viscous losses. For wave lengths several times greater than the wave
length at the resonance frequency, the compliance is described by a universal curve whose shape depends neither
on wave velocity nor on viscous losses.

The velocity of free strain waves in a layer of a viscoelastic material was calculated in [4]. The maximum
amplitude of the vertical component of the traveling strain wave (the resonance peak η/ζ of the first mode of free
oscillations) is observed at V/C0

t � 1.52 [4, Fig. 3b, curve 1]. Thereby, we have λ � 3H , which agrees well with the
results of the present work.

The profiles of the vertical and horizontal displacements characterizing the strain-wave structure were also
given in [4]. It was demonstrated that the vertical displacement at the resonance frequency of the first mode of
free oscillations [4, Fig. 4a, curve 1] smoothly increases across the coating and reaches a maximum at the outer
boundary.
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Fig. 2. Ratio of the compliance components versus the wave length for
V/C0

t = 0.1 (1), 0.5 (2), 1.52 (3), 5 (4), and 10 (5): the solid and dashed
curves refer to μ = 0.0125 and 0.4.

For V/C0
t > 1.5 and wave lengths smaller than the wave length at the resonance frequency, Fig. 1b displays

additional maximums and minimums located to the left of the peak value on curves 2–4. These peaks arise at
the resonance (or anti-resonance) frequencies at which an odd (or, respectively, even) number of maximums of
displacements from the equilibrium position fall across the layer. The amplitude of these peaks decreases with
increasing resonance multiplicity (mode number) and loss factor of the coating material.

The compliance curves for the horizontal displacement behave similarly. Figure 2 shows the ratio of the ab-
solute values of the vertical and horizontal compliance |Cn|/|Cp|, equal to the ratio of the corresponding amplitudes
of displacement components |η/ζ|, versus the wave length. As the wave velocity decreases, the curves corresponding
to this dependence are shifted toward higher values of |η/ζ| and lower wave lengths. For short low-velocity waves,
the ratio |Cn|/|Cp| can reach high values (for instance, |Cn|/|Cp| � 2000 for V/C0

t = 0.1 and λ/H � 1.2). For
λ/H > 6 and V/C0

t > 1.5, the longitudinal displacements exceed the transverse displacements. Owing to the
increase in wave velocity and losses in the material, the longitudinal and transverse strains become closer to each
other. The loss factor exerts the most significant effect in the region of the resonance peak of the compliance ratio.

Figure 3 shows the phase lag of the vertical displacement from pressure. For V/C0
t � 0.5 (Fig. 3a), the phase

angle is mainly determined by the loss factor and depends only weakly on the wave length and its velocity. For
V/C0

t > 1.5 (Fig. 3b), the phase changes by 180◦ in passing through each resonance. As the loss factor increases, the
curves become smoother; the phase increases in the long-wave part of the spectrum and decreases in the short-wave
part of the spectrum.

The phase shift between the vertical and longitudinal oscillations also behaves differently in regions located
below and above the principal resonance of the coating. Thus, for V/C0

t � 1.5 (Fig. 4a), the phase shift varies
within 180◦ with increasing frequency (decreasing λ). For a greater wave velocity (Fig. 4b), a 180◦ change in the
phase shift occurs repeatedly for materials with small losses. These oscillations level off with increasing loss factor.

Figure 5 shows the dependences of max |C∗
n| and λ/H on V/C0

t for different values of the loss factor. For low
velocities of the wave (low frequency of oscillations, because f = V/λ), the maximum compliance is independent
of the frequency (wave length) and loss factor. For rubber-like materials with σ = 0.5, the maximum value of the
quasi-equilibrium compliance is |C0

n| � 0.45H/E, which is almost twice smaller than the compliance of a bar under
static deformation (f = 0) under the condition that the bar length is substantially greater than its transverse size.
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Fig. 3. Phase lag of the vertical displacement from pressure for V/C0
t � 0.5 (a) and V/C0

t > 0.5 (b):
(a) V/C0

t = 0.1 (1), 0.2 (2), and 0.5 (3); (b) V/C0
t = 0.9 (1), 1 (2), 1.52 (3), 5 (4), and 10 (5); the solid

and dashed curves 1–3 refer to μ = 0.0125 and 0.4, respectively; curves 3′ and 3′′ refer to μ = 0.1 and 0.2,
respectively.

The dynamic response factor Kd = |Cn|/|C0
n| is a function of the wave length (frequency) and decreases with

increasing losses. Thus, the maximum value is Kd = 19 for μ = 0.05 and Kd = 2.5 for μ = 0.4.
The wave length that ensures the maximum compliance depends weakly on the loss factor (Fig. 5b). The

difference arises in the region 0.5 < V/C0
t < 1.2, where the wave length becomes almost one third (λ � H) of its

value in the quasi-equilibrium region, as the loss factor decreases. For V/C0
t > 1, the wave length that ensures the

maximum compliance increases in proportion to the wave velocity.
Figure 6 shows the maximum compliance of the coating in the vertical direction for μ = 0.1 and different

values of Poisson’s ratio. As the medium compressibility increases (Poisson’s ratio decreases), the dimensionless
compliance increases, which is particularly noticeable for λ/H > 3 (Fig. 6a). The condition of resonance λ/H � 3
for V/C0

t < 1 is valid only for small values of compressibility. Thus, curve 2 has a weakly expressed resonance
character, whereas curves 4 and 5 for λ/H > 5 asymptotically reach a horizontal line.

The character of the compliance curves changes if the wave velocity exceeds a critical value determined by
the expression

V

C0
t

=

√
2(1 − σ)
1 − 2σ

. (5)

For V/C0
t = 1.5, the wave velocity is still insufficient for condition (5) to be satisfied in the indicated range of σ.

The compliance peak in Fig. 6b is shifted toward greater wave lengths with decreasing σ.
For curve 2–5 in Fig. 6c, the wave velocity exceeds the critical value determined by condition (5). As in

Fig. 6b, with decreasing σ, the maximums of these curves increase and are shifted toward higher wave lengths. In
contrast to Fig. 6b, the maximums of the curves are located to the left of the maximum of curve 1, because the curve
of the wave velocity versus frequency becomes discontinuous at σ �= 0.5 and is shifted toward higher frequencies
(lower wave lengths) if the wave velocity becomes greater than the critical value determined by condition (5) (see
[4, Fig. 1]).

A method for measuring the vertical component of the compliance of viscoelastic coatings is proposed in
[5, 6], and some measured results are given. The compliance measured in experiments should be further compared
with data calculated by formulas of the present paper with allowance for measured viscoelastic properties of the
material.
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V/C0
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t = 0.5 (1), 1 (2), and 1.5 (3); the solid and dashed curves refer to
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Fig. 6. Dimensionless compliance versus the wave length for V/C0
t = 0.5 (a), 1.5 (b), and 5 (c)

and different Poisson’s ratios (μ = 0.1): σ = 0.5 (1), 0.4 (2), 0.3 (3), 0.2 (4), and 0.1 (5).

It follows from the results obtained in the present work that the compliance of a viscoelastic coating depends
not only on the frequency but also on the length of the pressure wave. The longitudinal strain under certain
conditions is demonstrated to be rather high and even to exceed the vertical strain. These facts should be taken
into account in explaining the mechanism of drag reduction by the presence of compliant coatings in a turbulent
flow, determined by correlation of longitudinal and vertical perturbations introduced by the coating into the near-
wall flow region. Therefore, phase relations between these perturbations are also important. Compliant coatings
made of a material with Poisson’s ratio σ �= 0.5 (e.g., polyurethane foam) seem to be the most efficient ones, because
they have greater compliance at low velocities.
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